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Analytical and numerical verification of the Nernst theorem for metals
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In view of the current discussion on the subject, an effort is made to show very accurately both analytically
and numerically how the Drude dispersion model gives consistent results for the Casimir free energy at low
temperatures. Specifically, for the free energy near T=0 we find the leading term proportional to 77 and the
next-to-leading term proportional to 7%, These terms give rise to zero Casimir entropy as T— 0 and are thus

in accordance with Nernst’s theorem.
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I. INTRODUCTION

In recent years there has been a lively discussion about
the thermodynamic consistency of the expression for the Ca-
simir pressure at finite temperature 7. The problem gets ac-
centuated at low values of 7, where one has to satisfy the
Nernst theorem saying that S=—dF/dT goes to zero as T
—0. (Here S is the entropy and F the free energy, both
referring to unit plate area.) What we shall consider in the
following is the standard Casimir configuration, implying
two semi-infinite homogeneous metallic media separated by
a vacuum gap of width a. We take the two media to be
identical and assume that they are nonmagnetic with a
frequency-dependent relative permittivity e(w). Spatial dis-
persion is neglected. The two surfaces lying at z=0 and z
=a are assumed to be perfectly planar and to be of infinite
extent.

A central ingredient in the discussion of the thermody-
namic consistency of calculated results for the Casimir at-
tractive force between real materials is the form of a disper-
sion relation used as input in the conventional Lifshitz
formula. A very useful dispersion relation—the one that in
our opinion is by far the most preferable one among simple

dispersion relations for real systems at arbitrary
frequencies—is the Drude expression
w2

eid) =1+ —— (1)

{L+v)

Here w=i{, w, is the plasma frequency, and v is the relax-
ation frequency (we use the same notation as in Ref. [1]).
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The plasma wavelength is \,=27c/w),. For gold, the sub-
stance that we shall focus on in the following, we use

w,=9.03eV, v=345meV, \,=1374nm. (2)
In Ref. [1], we employed the values ®,=9.0eV and v
=35 meV, which amounts roughly to a difference on the 1%
level. The exact determination of Drude parameters is a non-
trivial matter as discussed in [2]. Using a slightly different
set of Drude parameters will shift our numerical results
slightly, but does not alter any of our conclusions.

When comparing with experimental values it turns out
that the Drude relation fits optical data very accurately for
<2X 10" rad/s [3,4]. In this connection we should bear in
mind the following fact (cf. also the discussion in Ref. [5]):
There exist no measurements of the permittivity at very low
frequencies. What is available is a series of measurements of
the imaginary part &”(w) of the complex permittivity &(w)
=¢'(w)+ie"(w). The Kramers-Kronig relations then permit
us to calculate the real part &'(w), and thus the complete
e(w) is known. Permittivity data kindly supplied by Astrid
Lambrecht cover a very large frequency region, from 1.5
X 10" rad/s to 1.5X 10'® rad/s. From these data, the relax-
ation frequency v can be derived. As mentioned, from com-
parison with experimental data it turns out that v can be
taken to be constant to a good accuracy, up to about {=2
X 10" rad/s. For low frequencies the Drude relation yields
the proper extrapolation down to {=0.

A word of caution is called for, as regards the circum-
stance that permittivity measurements are done at room tem-
perature in practice. The frequency v is in principle tempera-
ture dependent, and we do not know the value of »(T=0)
very accurately. It might seem natural here to invoke the
Bloch-Griineisen formula for the temperature dependence of
the electrical resistivity (cf. [6] or also the discussion in Ref.
[1]). From this, a form for »=»(T) can in principle be found.
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According to the formula, the value of v should go to zero as
T— 0. However, in practice this is not true. There are always
impurities present, which make the value of v finite at 7=0
[7]. The Bloch-Griineisen formula, thus, is not followed in
this limit. Mathematically, the important point is that

Plei)-11—0

This relation ensures that the zero-frequency TE mode does
not contribute to the Casimir force at all, as discussed in
detail in Ref. [1]. Strictly, the Drude parameters of Eq. (2)
are valid at room temperature, and v will take significantly
smaller values for low temperatures. This affects our numeri-
cal results quantitatively, but not qualitatively; as long as v is
nonzero, the TE part of the free energy vanishes at zero
frequency which is the central point.

The recent series of works on the Casimir effect by the
present group of authors [1,5,8—13]—built upon the Lifshitz
formula and the measured values of &(w) in combination
with the Drude relation—have nowhere been found to run
into conflict with basic thermodynamic principles. And there
are other papers in agreement with ours: for instance, Jan-
covici and Samaj [14] and Buenzli and Martin [15] consid-
ered the Casimir force between two plates in the high-
temperature limit. They found the linear dependence in 7T for
the Casimir force to be reduced by a factor of 2 from the
behavior of an ideal metal, this being a signal of the vanish-
ing influence from the zero-frequency TE mode. (The first
observation of the vanishing influence from this particular
mode was made by Bostrom and Sernelius [16].) Further
support is found in the paper of Sernelius [17], who calcu-
lates the Casimir force taking spatial dispersion into account
as well. It is found that at high temperatures and/or at large
separations the force is reduced by the same factor of 2 com-
pared with the ideal-metal (IM) result.

There is no universal agreement on these issues, however.
In a series of recent papers—cf., for instance, Refs.
[18-22]—it is argued that the Drude dispersion relation runs
into trouble explaining recent experiments and, moreover,
comes into conflict with the Nernst theorem. These authors
favor, instead of the Drude relation, the plasma relation

as {— 0. (3)

2

(i) =1+ % (4)

which corresponds to setting v=0 in Eq. (1). [It should be
noted that expression (4) does not satisfy condition (3).]
An argument of the latter references is that omission of a
zero-frequency TE mode would add a term linear in 7 to the
free energy. This would violate the Nernst theorem as it
would give a nonzero contribution to the entropy at 7=0.
However, this argument is based upon use of the IM model
where e =00 for all { or use of the plasma model (4) where no
relaxation is present. With v>0 the term in question is still
linear away from 7=0, but the precise behavior as 7— 0 has
been less obvious. As argued in Ref. [1], the straight line
should bend to become horizontal at 7=0. This was not veri-
fied in utmost detail, however; the numerical results of Ref.
[1] did not go sufficiently close to T=0 to show the behavior
very distinctly, and the previous discussion and disagreement
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about violation of the Nernst theorem has accordingly con-
tinued. The main purpose of the present work is to investi-
gate the issue more closely: we will show in detail, both
analytically and numerically, how the Casimir energy be-
haves close to T=0 and by that show how it is consistent
with the Nernst theorem.

We shall not go into a study of experimental aspects in
this paper. Rather, the objections referred to above make it
mandatory to reconsider the thermodynamics associated with
the Drude relation anew, which brings us to the central theme
of this paper. We will aim at showing, via a combination of
analytical and numerical methods, how the basic theory
sketched above (essentially the Drude theory) satisfies the
Nernst theorem to a very high accuracy. We consider this
point to be important; a simple physical model of course
cannot be permitted to run into conflict with thermodynam-
ics.

In the next section we show analytically, by using the
Euler-Maclaurin formula, that the dominant contribution to
the free Casimir energy F near T=0 is proportional to 72. We
evaluate both this term and the leading correction term,
which is proportional to 7%2. This implies that the entropy
S=-0F/JT tends to zero as T—0, in accordance with the
Nernst theorem. In Sec. III we calculate F numerically and
find agreement with the previous analytical result to a very
high degree of accuracy. The results are illustrated in various
figures. Thus, we can conclude that the Drude ansatz does
not run into conflict with thermodynamics at all.

Readers interested in recent reviews on the Casimir effect
may consult Milton’s book! [23] and several review articles
[24-27]. A great deal of recent information can also be found
in special issues of J. Phys. A [28] and New J. Phys. [29].

As mentioned above, we shall not be concerned with a
comparison between theory and experiment in the present
paper. We mention, though, the recent experiment of Obrecht
et al. [30], which seems to report the first accurate measure-
ment of thermal Casimir effects. The experiment is impor-
tant, but it lies outside the scope of the present investigation
since it deals with nonuniformly heated systems.

Finally, we mention the special variant of the thermal Ca-
simir problem consisting in studying, instead of a metal, a
semiconductor endowed with a small but finite conductivity
at zero frequency [31,32]. According to the authors of these
references, this situation implies an interchange of the roles
of the TE and TM modes, as compared with the case of a
metal. Namely, within an idealized approach, they find that
the TM reflection coefficient gets a discontinuity at (=0,
implying in turn an apparent conflict with the Nernst theo-
rem. The problem is interesting, and we hope to return to it
in a later paper.

II. ANALYTICAL APPROACH: CASIMIR FREE ENERGY
NEAR 7=0 FOR REAL METALS

As mentioned, we use the same notation as in Ref. [1]. We
will evaluate the leading T dependence of the Casimir free

Tt may be mentioned for completeness that this book from 2001
was written from the standpoint of the “classical” IM model.
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energy near T=0 for metals using the Drude relation (1),

2
si-1=—20_ P

(Z+v)

with D=w?/v. The free energy is given by expression (3.4a)
in [1] as

1 o]
pF=—-2"
27,20 e

where B8=1/kT and

(<L, (5)

[

[In(1 =A™) +1n(1 = A™®)]g dg, (6)

T™ _ 4 -2qa
NV =Ae "1,

)\TE - Be—an

The prime on the summation sign means that the case m=0
is taken with half weight. The coefficients A and B are the
squared Fresnel reflection coefficients for the two media and

are given by
_ 2 _o\2
e B o R
s+ep s+p

with

s=Ve-1+p% p=-—.

¢
Here a is the plate separation, & the relative permittivity, ¢
the velocity of light in vacuum, and ¢ the Matsubara fre-
quency given by

(= %mT. (8)

Note that the quantities A, B, s, p, and { all depend upon the
summation variable m. (Units c=Ai=k=1 are not used.) The
term of interest is the TE mode, since this is the term that
gives rise to the controversy about the Nernst theorem.

With the small-{ dependence of Eq. (5) the B has a scal-
ing form such that it can be expressed in terms of one vari-
able. So by introducing a new variable x to replace g the {
dependence can be removed fully:

202 2.2
2 qc qc
=5~ <L v. 9
“Te-ng g ¢ ©
With this we have
VI +x% - x>2 —
B=|———=—| =(V1+x>=x)%, (10)
( VI+x2+x
and the TE free energy expression can be written as
BF"=C2 g(m), (1)
m=0
with
g(m) = mJ xIn(1 = Be™)dx, (12)
X0
where
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D w’ a [
= = _L’ = 2 = 2_ /D_ s = .
chB chp Y=o ¢ Vbex 3 D

(13)

The small-T behavior can now be obtained by use of the
Euler-Maclaurin summation formula

- * 1 1
! - d __/0 _Wo__”'
EO g(n) 0 g(wdu = ¢'(0) + —¢"(0)

(14)

One easily sees that
g'(0) =f x In(1 - B)dx. (15)
0

This integral can be performed analytically. First introduce a
new variable x=sinh # with dx=cosh rdt:

g'(0)= f sinh 7 cosh 7 In(1 — e™*) dt
0

= lf (€ = e NIn(1 — e ¥)dt. (16)
4Jo

Next we substitute e >=u for which —2¢ %dt=du and use
partial integration to obtain

1 (! 1
g,(0)=—§fo (l—y)ln(l—lf)du

=- %{i[(l +u)’In(1 +u) + (1 —u)’In(1 —u)] - Zu}

1

0

1
=—Z(21n2—1)x—0.09657. (17)

At T=0 the free energy is determined by the integral in
Eq. (14) (besides the contribution from the TM mode). For
small T—0 the deviation from the T=0 value is thus (8
=1/kT)

AFTE = 9[— ig'(O)] = L(2 In2-1). (18)

BL 12 488

This result was presented by Milton at the QFEXTO03 Work-

shop and is given as Eq. (22) in Ref. [8] or Eq. (4.9) in Ref.
[11].

It can be noted that AF”E is independent of the plate sepa-
ration a and can thus be valid only sufficiently close to T
=0 for a given a such that AF"E < F"E~#c/a®. Evaluation
of the next term as given by the result (30) below verifies
this. The leading term of AF"F dominates its next term only
when the dimensionless quantity aC'"?<1 or
a*kT< fivc?/ o’ A consequence of this is that for increasing
a the temperature interval where Eq. (18) is valid decreases
rapidly, and AF"Z becomes more and more negligible com-
pared to FTE since then AFTE~C/B
=w?(kT)*/ (*hv) < vl (wlzja“). (Thus in the present case
AF e < FTE provided a>cvl wlz) ~0.1 nm with
asz<<ﬁvcz/w12, fulfilled.) In the limit a—o the IM (e
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=o0), but now with the linear term included, is recovered.
But the latter does not violate the Nernst theorem as long as
a is finite, and for a=% there is no Casimir free energy
anyway.

Inserting the value for g’(0) and the values f%w),
=9.03 eV and Av=34.5 meV for Au we find with C given by
Egs. (13) (A=1.0545X107*1Js, k=1.381X10"2J/K, ¢
=2.998 X 10% m/s)

AF™E=CT* with C; = 5.81 X 107" J/(m? K?).
(19)

It turns out that Eq. (18) holds only very close to T=0
(i.e., T<0.01 K), but there will be a leading correction that
we can obtain with good accuracy. Expanding g(m) in pow-
ers of m one notes that half-integer powers will occur. Thus,
formula (14) is not quite valid as g”(0) and higher-order
derivatives will diverge. However, this problem can be
avoided since the formula can be applied to summation start-
ing at m=p (p=1,2,3,...). Thus, we have

” r! = 1 1
> gln) =2 gn) + f g(u)du + Eg(p) - Eg’(p)
n=0 n=0 P
L n ) -
08 P
—_ fm d S L ! L n -
=), gu)du + 8- 8 (p)+720g p)+ -,
(20)
where
p-1 1 P
S=2 gn) +=g(p) - J g(u)du. (21)
n=0 2 0

For a power term g,(m)=m? (for small m) we have

14
gsi(p)=ap™', gl(p)=o(oc-1)(o-2)p77, f go(u)du
0

1

o+l
= . 22
1+ Up (22)

With the choice p=1 we get

1 1
§=8,(1)==--——. 23
M 2 l+4+o @3)
One may note that S;(1)=0 as should be expected. The

power of key interest here will be o=3/2 by which S,
=1/10, and thus

’It may be noted that for a/(fic8)< 1 an a-independent contribu-
tion to the free energy was found also in the “classical” Casimir
theory for metals at low temperature. See Eq. (3.38) in Ref. [23] or
Eq. (3.24) in Ref. [1].
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1 1
AS,(1) = S,(1) - —gl(1) + ——g(1
So(1) = So(1) = 7861 + 085 (1)

1
~-0.02552 = - 0.204Eg;(1). (24)

When other terms are neglected the error can be estimated
from the next term in the series (provided the sums of
higher-order terms converge):

0503553
g, (D= -\ | )| =
30240°7 302402\2/\ 2 J\ 2 /\ 2

~4.65 X 107, (25)

which is only about 0.2% of the value (24). For increasing
values of p the error goes further down rapidly. [Instead of
the result (24), p=2 yields =-0.02549.] Thus, Eq. (24) with
p=1 is a good estimate for the sum of interest.

With g(m) given by Eq. (12) we can expand to leading
order in m or y(xT"?). To this leading order the limit of
integration x,(>T""?) can be put equal to zero since the inte-
grand vanishes for x=0. We find

gm)=mg'(0) + myl+ -+ . (26)
Now, from Egs. (8) and (13),
y= 2av’%xm“2, (27)
with C given by Eq. (13). Thus the derivative becomes
g’(m)=g'(0)+3a\"%lm'/2+ e (28)
where g’(0) is given by Eq. (17) and [with substitution x
=sinh ¢ as in Eq. (16)]

“ X’B 1(” 1
I:J ol dx:—f (e —edi=—.  (29)

Now we will use Eq. (21) for the most simple case m=p
=1 for which S,(1) is given by Eq. (23), and with exponent
o equal to 1 and 3/2 for the two separate terms in Eq. (26)
the corresponding values of S, (1) are 0 and 1/10, respec-
tively. Thus, with Egs. (24) and (28) we have 12AS,(1)=
—gl(0)=—g'(0) and  12A8;,(1)=—0.204g},(1)=-0.204
X 3a\2wCI. So with Eq. (18) the change in free energy be-
comes

AFTE = %[ASl(l) +AS3,(1) + -]

C 1 3av2@wC
=—|-—=g'(0) || 1-0204- —————+ - |,
Bl 12 - 12¢'(0)

(30)

which gives the small-T correction to the result (18). Again
inserting the previous values for w, and v we obtain with
plate separation a=1000 nm:
AFTE=C\T’[1 - C,T"? + ---] with C, ~3.03 K2,
(31
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This result can only be valid for very small T as it other-
wise becomes negative already for T slightly larger than
0.1 K. To avoid this one may instead write

C,\T?

AF ,ThE = #ZT”Z (32)
as the theoretical or analytical result for AFTE for small T.
This Padé approximant form [which is equivalent to Eq. (31)
with respect to the first two terms] turns out to be convenient
for comparison with numerical evaluations. If the corre-
sponding numerical result for AF'F is AF’E " one can evalu-
ate the ratio

AFTE _ AFTE
— th o num (33)

and consider the limit 7—0 for which the limiting value
should be R=0 (cf. more details in Appendix B).

III. NUMERICAL CALCULATION OF FREE ENERGY AT
LOW TEMPERATURES

We have calculated the free energy F'* as a function of
temperature given by Eq. (6) for two gold half-spaces sepa-
rated by a vacuum gap of width a=1.0 um. This would be a
typical experimental situation where the influence from the
finite temperature is large, about a 15% increase in the mag-
nitude of the Casimir free energy [1] and a corresponding
decrease of the Casimir force according to our theory with no
contribution from the TE mode at zero frequency. The cal-
culations use the permittivity data for gold, received from
Astrid Lambrecht as mentioned. At T=0 the free energy is
calculated numerically as a double integral rather than a sum
of integrals using a two-dimensional version of Simpson’s
method.

The vanishing of the zero-frequency mode is intimately
connected with the behavior of the reflection coefficient B at
vanishing frequency. According to the Drude model [or any
model satisfying (3)] the TE mode reflection coefficient
tends to zero as {—0. To illuminate this point, we have
plotted A and B as a function of imaginary frequency and
transverse momentum, k |, for an interface between gold and
vacuum in Fig. 1. In part (¢) of this figure, we clearly see
how B vanishes smoothly when {—0 for k, #0 consistent
with Maxwell’s equations of electrodynamics. However, the
coefficient A in Fig. 1(a) for the TM mode equals 1 for all k |
as {—0, as is also the case for all { for an ideal metal. In the
latter limit we also have B— 1, but for {=0, B remains zero.

For ideal or nonideal metals it is well known that the
temperature correction for the TM mode behaves as T*.
Thus, it does not add to the 72 and 7°? terms that we find
from the TE mode.

By direct numerical integration and lengthy summations
independent of the analytic derivations made in Sec. II, we
obtain the free energy numerically. Figure 2 shows the free
energy versus temperature up to 800 K, while the inset
shows details of the parabolic shape close to 7=0. First of all
the figure shows the controversial decrease of the magnitude
of the Casimir free energy and thus also the related decrease
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FIG. 1. Squared reflection coefficients A and B of the metal
interfaces as defined in Eq. (7) for the TM and TE modes, as a
function of ¢/c¢ and the transverse momentum k. (a) A for the TM
mode, (b) B for the TE mode, and (c) B for k, and ¢ close to zero.

of the Casimir force up to a certain temperature. Second, the
inset shows that the tangent of the curve is horizontal at T
=0 as predicted. This implies that the entropy due to the
Casimir force is indeed zero at 7=0. Thus the Nernst theo-
rem is not violated when using the realistic Drude dispersion
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FIG. 2. Numerical evaluation of the free energy (6) between two
gold half-spaces as a function of temperature. The inset gives de-
tails for low T.

model. In contrast, it would be violated if a TE term were
added for {=0. This conclusion, as mentioned above, is
clearly in contrast to that presented in various earlier works
[18-22]. The reader should note that the dependence of v on
temperature has been neglected in Fig. 2.

Now there are always some uncertainties connected with
numerical calculations. Also the analytic derivation has some
uncertainties, e.g., concerning proper use of the Euler-
Maclaurin formula, and concerning convergence and neglect
of higher-order terms. In Fig. 3 we have therefore made a
more accurate and much more sensitive test of the behavior
near 7=0 comparing the analytic result with the numerical
one, by plotting the ratio R defined in Eq. (33). We see that R
when extrapolated approaches zero linearly with a finite
slope (when taking the curvature of the plot into account).
Thus, with high accuracy we find full agreement concerning
the 77 and 752 terms in the free energy and their coefficients
C, and C,. As the number of terms to be summed numeri-
cally increases rapidly when 7=0 is approached, our evalu-
ations were terminated at 7=0.008 K. The extrapolated
value R=0 for T=0 means that the coefficient C; is correct
while the finite slope means that C, is correct too within
numerical uncertainties. Also if a more dominant power were
present, R would diverge at 7=0. The finite slope of R at
T=0 means that the next term in AFTE is of higher order (see
also Appendix B for details).

0.35

0.30¢

0.25¢

.20t

0.15¢

(A Fth_ AFnum) /AFth
o

0.10}

0.05¢ Separation: a = lpm] |

0.00 . . . .
0 0.2 0.4 0.6 0.8 1

Temperature (K)

FIG. 3. Plot of the ratio R defined in Eq. (33).
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APPENDIX A: ALTERNATIVE DERIVATION BY
EXPANSION OF g(m)

As a variant of the analytic approach, let us show how the
essential dependence of the free energy F'F on T near T=0
also can be recovered by making use of complex integration.
We begin with the TE expression

BFTE=CY, 'm| xIn(1-Be *)dx, (A1)
m=0 X0
where
2
0} e
C= ,8_hp_2 a=2a\2mwCm. (A2)
vc

The essential step now is to expand the logarithm to the first
term,

e’}

xBe “dx
0

BFE=—C> m (A3)
m=1

[m=0 does not contribute to the sum (A1)], where we have
also replaced the lower limit x, by zero. We next use the
formula [34]

1 c+i®
e ¥ = —f ds(ax)™I'(s), ¢>0, (A4)
27 ) i

where I'(s) is the gamma function. The summation over m is
easily done,

> ml-f/zzg(f— 1). (AS)

m=1 2

Here { is the Riemann zeta function, defined by the analytic
continuation of

1~ ¢!

T(s) ), -1

{s)= dt (A6)
for Re(s) <1 [33]. As is known, {(s) is one-valued every-
where except for s=1, where it has a single pole with residue
1. As I'(s) has simple poles at s=—n with residue (—1)"/n!,
n=0,1,2,..., we get, by taking ¢ >4 and closing the contour
of integral (A4) as a large semicircle on the left,

* {r(4) 1
X

TE _ _ bl
pE = CJOB (2ax)* 27C)?

+4(=1)

- 2ax\"%g<— %) + o }dx. (A7)

The first term in Eq. (A7) diverges, the reason being that we
have replaced the lower limit x, by zero. This term is inde-
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pendent of 7" and can thus be omitted in the present context.
Thus using {(-1)=-1/12, &(-3/2)=-0.025485, together
with the integrals [ Bxdx=1/12 and [jBx*dx=8/105, gives
the temperature-dependent free energy to first order in B.

However, this is easily extended to arbitrary order in B by
expansion of the integrand in Eq. (Al) since (Be )"
=B"1 —anx+%(anx)2+ ---]. Thus, by summation xB
—x2 B"/n=—x1In(1-B) and x(Bx)—xZX,_,(nB"/n)x
=x’B/(1-B). By this the above integrals become those of
Egs. (15) and (29), and for the temperature-dependent part of
the free energy we thus get

AFTE = — %{—g’(O)((— 1)- 2a\"ﬁ1§(— %) + o ]

~ 87128 803 0T

(A8)

fully consistent with the result (30). Note that {(-3/2) is
close to the approximate value (24) and even closer to the
more accurate value (25). Thus, we have reason to consider
{(=3/2) to be the exact result for the Euler-Maclaurin expan-
sion performed in Sec. II.

APPENDIX B: REMARKS ON THE QUANTITY R

Let us explain in some more detail the interpretation of
the quantity R, defined in Eq. (33). This quantity gives the

PHYSICAL REVIEW E 75, 051127 (2007)

relative difference between the temperature-dependent theo-
retical free energy AF,’, having the form (32), and the
temperature-dependent numerical free energy AFme calcu-
lated from Eq. (6). (As mentioned in Sec. III, the TM mode
behaves as 7% and is thus negligible near T=0.)

Let us assume that AF,ThE has the same form (32) as be-
fore, with coefficients C; and C,, and that AFE has the

num
form

A FTE

num:Dl(Tz_D2T5/2+D3T3+ ), (Bl)
with calculated values for the coefficients D, D,, and Dj.

Then,

TE TE
_Ath_AFnum_Cl_D] & 12
= TE = + (Dz - C2)T
AF"! a G

D,
+ _(C2D2—D3)T+ .
G

If C;=D; and C,=D,, we see that R is zero at 7=0 and is
linear in 7 for low 7. From Fig. 3 we see that the fit is perfect
insofar as it may be determined from the graph. A constant
term would have caused a nonzero value at 7=0, and a non-
zero T"? term would have caused a vertical slope near T
=0. None of these effects are perceivable within the numeri-
cal accuracy, from which we must conclude that C| and C,
are correct within the numerical accuracy.
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